89 research outputs found

    NLH: A Blind Pixel-level Non-local Method for Real-world Image Denoising

    Get PDF
    Non-local self similarity (NSS) is a powerful prior of natural images for image denoising. Most of existing denoising methods employ similar patches, which is a patch-level NSS prior. In this paper, we take one step forward by introducing a pixel-level NSS prior, i.e., searching similar pixels across a non-local region. This is motivated by the fact that finding closely similar pixels is more feasible than similar patches in natural images, which can be used to enhance image denoising performance. With the introduced pixel-level NSS prior, we propose an accurate noise level estimation method, and then develop a blind image denoising method based on the lifting Haar transform and Wiener filtering techniques. Experiments on benchmark datasets demonstrate that, the proposed method achieves much better performance than previous non-deep methods, and is still competitive with existing state-of-the-art deep learning based methods on real-world image denoising. The code is publicly available at https://github.com/njusthyk1972/NLH.Comment: 14 pages, 9 figures, 10 tables, accept by IEEE TI

    Forward modeling of P- and S-waves response of fractures intersected with horizontal wells in tight reservoirs

    Get PDF
    Horizontal wells play an important role in expanding the drilling volume of reservoirs and oil production area, and are widely used in unconventional reservoirs. Fractures have a positive effect on reservoir permeability, but fractures can also cause accidents such as casing deformation and inter-well frac-hit. It is of great significance to identify and evaluate fractures intersected with horizontal wells in tight reservoirs. In this paper, a three-dimensional numerical model of horizontal wells and fractures in tight reservoirs is designed. The responses of monopole P-wave and dipole S-wave to fractures with different width, dip angle and filling medium are systematically studied, by using three-dimensional finite difference algorithm. The results show that when the fracture is filled with calcite, the amplitude attenuation of monopole P-wave and dipole S-wave has a monotonic exponential increase with the increase of fracture width and the decrease of fracture dip angle. In the real data processing, the amplitude attenuation of P- and S-waves can be used to jointly evaluate the fracture filled with calcite. When the fracture is filled with water, both P- and S-waves have prominent amplitude attenuation. P wave amplitude attenuation does not have a monotonic variation with the increase of fracture width but it has a monotonic increase with the decrease of fracture dip angle. S wave amplitude attenuation has a monotonic increase with the increase of fracture width and the decrease of fracture dip angle. The amplitude attenuation of P- and S- waves rises significantly when the fracture is filled with natural gas. This study is crucial for better understanding the response of P- and S-waves to fractures intersected with borehole in tight reservoirs, and it provides useful information for the inversion of fracture parameters by using P- and S-waves

    Safety and efficacy of Hypofractionated stereotactic radiosurgery for high-grade Gliomas at first recurrence: a single-center experience.

    Get PDF
    BACKGROUND: The optimal treatment for recurrent high-grade gliomas (rHGGs) remains uncertain. This study aimed to investigate the efficacy and safety of hypofractionated stereotactic radiosurgery (HSRS) as a first-line salvage treatment for in-field recurrence of high-grade gliomas. METHODS: Between January 2016 and October 2019, 70 patients with rHGG who underwent HSRS were retrospectively analysed. The primary endpoint was overall survival (OS), and secondary endpoints included both progression-free survival (PFS) and adverse events, which were assessed according to Common Toxicity Criteria Adverse Events (CTCAE) version 5. The prognostic value of key clinical features (age, performance status, planning target volume, dose, use of bevacizumab) was evaluated. RESULTS: A total of 70 patients were included in the study. Forty patients were male and 30 were female. Forty-nine had an initial diagnosis of glioblastoma (GBM), and the rest (21) were confirmed to be WHO grade 3 gliomas. The median planning target volume (PTV) was 16.68 cm3 (0.81–121.96 cm3 ). The median prescribed dose was 24 Gy (12–30 Gy) in 4 fractions (2–6 fractions). The median baseline of Karnofsky Performance Status (KPS) was 70 (40–90). With a median follow-up of 12.1 months, the median overall survival after salvage treatment was 17.6 months (19.5 and 14.6 months for grade 3 and 4 gliomas, respectively; p = .039). No grade 3 or higher toxicities was recorded. Multivariate analysis showed that concurrent bevacizumab with radiosurgery and KPS \u3e 70 were favourable prognostic factors for grade 4 patients with HGG. CONCLUSIONS: Salvage HSRS showed a favourable outcome and acceptable toxicity for rHGG. A prospective phase II study (NCT04197492) is ongoing to further investigate the value of hypofractionated stereotactic radiosurgery (HSRS) in rHGG

    Surfactant-Assisted in situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array

    Get PDF
    In this paper, a general low-cost and substrate-independent chemical etching strategy is demonstrated for the synthesis of ZnO nanotubes array. During the chemical etching, the nanotubes array inherits many features from the preformed nanorods array, such as the diameter, size distribution, and alignment. The preferential etching along c axis and the surfactant protection to the lateral surfaces are considered responsible for the formation of ZnO nanotubes. This surfactant-assisted chemical etching strategy is highly expected to advance the research in the ZnO nanotube-based technology

    Mineralogy and Magnetic Behavior of Yellow to Red Xuanhua-Type Agate and Its Indication to the Forming Condition

    No full text
    Iron oxides/hydroxides are important magnetic minerals to provide information about changes in the forming environment. However, the magnetic behavior in agate has been rarely investigated. In this study, the magnetic behavior of the Xuanhua-type agate with intense yellow to red colors from the Xuanhua District (China) was investigated by temperature dependence of magnetic susceptibility, hysteresis loop, isothermal remanent magnetization and the analysis of remanent coercivity components from the gradient acquisition plot. Yellow goethite and red hematite can be quantitatively identified by XRD and Raman spectroscopy due to their relatively higher content. Results showed that the red, yellow and orange Xuanhua-type agate had different magnetic behavior, and magnetite existed in the yellow and orange ones. Fluid inclusions in such agate had the homogenization temperature of ~168 °C to 264 °C. All results suggested that the dehydration of goethite to form hematite was the main reason for the high remnant coercivity (above 1000 mT) of hematite in the red agate. The co-existence of magnetite and goethite in the yellow and orange agate reflects the transformation from Fe2+ to Fe3+, indicating the change in the redox property of the environment. Unique patterns mainly formed by hematite and goethite make it a popular gem-material with high research value

    Research on the Energy-Saving Strategy of Path Planning for Electric Vehicles Considering Traffic Information

    No full text
    Battery-powered electric vehicles (EVs) have a limited on-board energy storage and present the problem of driving mileage anxiety. Moreover, battery energy storage density cannot be effectively improved in a short time, which is a technical bottleneck of EVs. By considering the impact of traffic information on energy consumption forecasting, an energy-saving path planning method for EVs that takes traffic information into account is proposed. The modeling process of the EV model and the construction process of the traffic simulation model are expounded. In addition, the long-term, short-term memory neural network (LSTM) model is selected to predict the energy consumption of EVs, and the sequence to sequence technology is used in the model to integrate the driving condition data of EVs with traffic information. In order to apply the predicted energy consumption to travel guidance, a road planning method with the optimal coupling of energy consumption and distance is proposed. The experimental results show that the energy-based economic path uses 9.9% lower energy consumption and 40.2% shorter travel time than the distance-based path, and a 1.5% lower energy consumption and 18.6% longer travel time than the time-based path
    • …
    corecore